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Abstract. In two-dimensional Yang–Mills and generalized Yang–Mills theories for large gauge groups, there
is a dominant representation determining the thermodynamic limit of the system. This representation is
characterized by a density, the value of which should everywhere be between zero and one. This density it-
self is determined by means of a saddle-point analysis. For some values of the parameter space, this density
exceeds one in some places. So one should modify it to obtain an acceptable density. This leads to the well-
known Douglas–Kazakov phase transition. In generalized Yang–Mills theories, there are also regions in the
parameter space where somewhere this density becomes negative. Here too, one should modify the density
so that it remains nonnegative. This leads to another phase transition, different from the Douglas–Kazakov
one. Here the general structure of this phase transition is studied, and it is shown that the order of this tran-
sition is typically three. Using carefully-chosen parameters, however, it is possible to construct models with
the order of the phase transition not equal to three. A class of these non-typical models is also studied.

1 Introduction

The two-dimensional Yang–Mills theory (YM2) is a labora-
tory for testing ideas and concepts of the Yang–Mills model
in the real four-dimensional world. The string picture of
YM2 is also interesting in itself, as an example of a nonper-
turbative analysis of a quantum field theory [1–7].
The starting point to establish the correspondence be-

tween YM2 and string theory is the study of the large-N
limit of YM2. For example, as it is shown in [3–5], a gauge
theory based on SU(N) is split at large N into two copies
of a chiral theory, which encapsulate the geometry of the
string maps. The chiral theory associated with the Yang–
Mills theory on a two-manifold M is a summation over
maps from a two-dimensional world sheet (of arbitrary
genus) to the manifoldM. This leads to a 1/N expansion
for the partition function and observables that is conver-
gent for all of the values of area× coupling constant on the
target spaceM, if the genus is one or greater.
The large-N limit of the U(N) YM2 on a sphere has

been studied in [8]. There the dominant (or classical) rep-
resentation has been found, and it has been shown that the
free energy of the U(N) YM2 on a sphere with surface area

A < Ac = π
2 has a logarithmic behavior. In [9], the free

energy has been calculated for areas A > π2, from which
it has been shown that the YM2 on a sphere has a third-
order phase transition at the critical area Ac = π

2. This is
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the well-known Douglas–Kazakov phase transition. It re-
sembles the Gross–Witten–Wadia phase transition for the
lattice two-dimensional multicolour gauge theory [10, 11].
The main characteristics of YM2 are its invariance

under area-preserving diffeomorphisms and the fact that
there are no propagating degrees of freedom. These proper-
ties are not unique to YM2, but rather are shared by a wide
class of theories, called the generalized Yang–Mills theories
(gYM2s) [12, 13]. Various properties of gYM2s have been
studied, including their phase structure [14], the large-N
behavior of the Wilson loops [15], and their double-scaling
limit properties [16].
The phase structure of gYM2s is an interesting issue

from various points of view. The reason the Douglas–
Kazakov (DK) phase transition occurs in YM2 and
gYM2s is that in areas A<Ac (the so-called weak regime)
the dominant density function determined through
a saddle-point analysis (ρw) is everywhere less than one.
But for areas A > Ac (the strong regime) ρw becomes
greater than one in some points, which is not acceptable,
and so ρw must be replaced by a new density (ρs). The
transition from ρw to ρs in YM2 induces a phase transition
of order three. The DK phase transition has a richer struc-
ture in gYM2s, and the order of which may be different
from three, in so-called nontypical theories [14].
Another feature of the phase structure of gYM2s, which

does not exist in YM2, is the possibility that ρw becomes
negative somewhere. A negative density is not acceptable
either, so it must be replaced by another density, which we
denote by ρg (“g” for the “gapped phase”), in which the
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density function is zero in some region. In [17], a special
gYM2 has been studied in which the action is a combi-
nation of quartic and quadratic Casimir operators, and
a third-order phase transition from the weak regime to
the gapped regime has been observed. This observation is
based on the classification established by Jurekiewicz and
Zalewski [18].
In the present work, the structure of the transition

between the weak regime and the gapped regime for ar-
bitrary gYM2s is studied. The technique used is similar
to that used in [14, 15] to study the DK phase structure
of gYM2s. In this method, only the behavior of ρw near
the critical point is needed. This is important, since the
functional form of ρw is explicitly known for all gYM2s,
while this is not the case for ρs and ρg. It is shown that the
non-DK phase transitions between the weak and gapped
regimes are in almost all gYM2s of order three. There
are, however, some special cases with fine-tuned cou-
plings where one can have a phase transition of nontypical
orders.
The scheme of the paper is the following. In Sect. 2,

gYM2s are briefly reviewed, and the method of calculat-
ing the order of non-DK phase transitions is discussed.
In Sect. 3, this method is applied to the typical model dis-
cussed in [17], and it is proved that the order of this non-
DK phase transition is three. Finally, in Sect. 4 a nontypi-
cal gYM2 is introduced; the order of its weak-gapped tran-
sition is 5/2, and an outline is given of how to construct
a general nontypical model with a non-DK phase transi-
tion of order 2+(1/k), where k is an integer greater than
one.

2 The general method

The partition function of the generalized U(N) Yang–Mills
theory on a sphere of area A is [12, 13, 19]

Z =
∑

r

d2r e
−AΛ(r) , (1)

where r labels the irreducible representations of the group
U(N), dr is the dimension of the representation r, and

Λ(r) =

p∑

k=1

ak

Nk−1
Ck(r) . (2)

Ck is the kth Casimir operator of the gauge group, and the
aks are arbitrary constants. For the partition function (1)
to be convergent, it is necessary that p in (2) be even and
ap be positive. The representations of U(N) are parameter-
ized by the integers ni, where n1 ≥ n2 ≥ · · · ≥ nN .
In the large-N limit, it is convenient to introduce the

continuous variable

φ(x) :=−n(x)−1+x , (3)

where

0≤ x :=
i

N
≤ 1 ,

n(x) :=
ni

N
. (4)

The partition function (1) then becomes

Z =

∫ ∏

0≤x≤1

dφ(x)eS(φ) , (5)

where

S(φ) :=N2
{
−A

∫ 1

0

dxG[φ(x)]

+

∫ 1

0

dx

∫ 1

0

dy log |φ(x)−φ(y)|

}
(6)

(apart from an unimportant constant), and

G(φ) :=

p∑

k=1

(−1)kakφ
k . (7)

Introducing the density function

ρ[φ(x)] :=
dx

dφ(x)
, (8)

it is seen that it satisfies
∫ a

−a
dzρ(z) = 1 , (9)

where [−a, a] is the interval corresponding to the values
of φ. Here it is assumed that G(φ) is even, and therefore
ρ(z) is even as well. The condition n1 ≥ n2 ≥ · · · ≥ nN de-
mands

0≤ ρ(z)≤ 1 . (10)

As N tends to infinity, the only representation that con-
tributes to the partition function (5) is the so-called dom-
inant (or classic) representation [20], satisfying

g(z) = P

∫ a

−a
dz′
ρ(z′)

z− z′
, (11)

where P indicates the principal value of the integral, and

g(z) :=
A

2
G′(z) . (12)

The free energy of the theory is defined by

F :=−
1

N2
lnZ . (13)

Using the standard method of solving the integral equa-
tion (11), the density function ρ is obtained, following [20],
as

ρ(z) =

√
a2− z2

π

×
∞∑

n,q=0

(2n−1)!!

2nn!(2n+2q+1)!
a2nz2qg(2n+2q+1)(0) ,

(14)
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where the parameter a satisfies

∞∑

n=1

(2n−1)!!

2nn!(2n−1)!
a2ng(2n−1)(0) = 1 . (15)

Here g(n) is the nth derivative of g.
The density function in (14), which we call ρw, should

satisfy the conditions (10). It obviously depends on the
area A and the parameters ak, and there could be regions
in the parameter space (of A and the aks) where these
conditions are violated. In such regions, the density cor-
responding to the dominant representation is not ρw. The
case where ρw(z) exceeds one for some z results in the well-
known DK phase transition. Here we are interested in the
case where ρw(z) becomes negative for some z. In this case
ρg, the density corresponding to the dominant represen-
tation, is zero in some interval Lg, the length of which is
defined 2b. For the same parameters, ρw is negative in a re-
gion L′g, the length of which is of the order of 2b. Defining

α := |min(ρw)| , (16)

one can use exactly the same arguments as used in [15] for
the DK phase transition to show that

Hg(z)−Hw(z)∼ b
2m+2 ∼ α1+(1/m) (17)

for large z. Here

Hg,w(z) :=

∫
dy
ρg,w(y)

z−y
, (18)

2m is the order of the first nonvanishing derivative of ρw at
the point where ρw attains its minimum, and by large z is
meant |z| � a.
Assume that the phase transition from ρw to ρg occurs

at some critical value A= Ac. If the order of the first non-
vanishing derivative of α with respect to A at the point Ac
is l, then (17) results in

Hg−Hw ∼ (A−Ac)
l[1+(1/m)] . (19)

Using (13) and the fact that the dominant representation
maximizes S, it is seen that

F ′(A) =

∫ 1

0

dxG[φ(x)] ,

=

∫
dyρ(y)G(y) ,

=
1

2πi

∮
dzH(z)G(z) , (20)

where the last integration is over a large contour, and in the
last step (18) has been used. Thus one arrives at

F ′g(A)−F
′
w(A) ∼ (A−Ac)

l[1+(1/m)] , (21)

and from this we have

Fg(A)−Fw(A) ∼ (A−Ac)
1+l[1+(1/m)] . (22)

This is our desired relation, and (22) shows that for typical
theories where l=m= 1, the system exhibits a third-order
phase transition at A= Ac, but for special theories (with
fine-tuned coupling constants) this order can in principle
be different from three. The situation is completely analo-
gous to that of the DK phase transition.
One can extend this argument to the case where sev-

eral phase transitions occur, and each of these could cor-
respond to a density exceeding one or becoming negative.
Suppose that the density is already such that there are re-
gions where it is identically one or zero, and suppose that
varying the parameters creates a new region where the
density either exceeds one or becomes negative. Let us call
this density ρ1, and the boundary which is violated (zero or
one) B. This density should be corrected so that the cor-
rected density ρ2 does not cross the boundary B. For the
density ρ2, there is a new interval where ρ2 is equal to B.
Defining α as the maximum of |ρ1(z)−B|, and 2b as the
width of the region where the value of ρ1 is not in [0, 1], it
is seen that exactly similar arguments lead to something
like (22), where the left-hand side is F2(A)−F1(A). So,
even if there are several transitions of either kind (the dens-
ity crossing zero or one), the order of each transition is
similar to the case of the DK phase transition. Specially,
any transition which is typical (l =m= 1) is a third-order
transition.

3 A typical model

Consider the following typical model:

G(z) = c2z
2+ c4z

4 , (23)

which has been investigated in [14, 17], where

c4 > 0 . (24)

Using (14) and (15), one finds

ρw(z) =
µ

π

√
a2− z2

(
z2+

a2

2
+β

)
, (25)

a2 =−
2β

3
+
2

3

√
6

µ
+β2 , (26)

where

β :=
c2

2c4
,

µ := 2Ac4 . (27)

There arise three distinct regions in the (β−µ) plane.

I β >
√
2/µ.

Here ρw(z) has a maximum at z = 0.

II −
√
2/µ < β <

√
2/µ.

Here ρw(z) has a positive minimum at z = 0 and two
maxima at ±z0 :=±

√
(3a2−2β)/6.

III β <−
√
2/µ.

Here ρw(z) has a negative minimum at z = 0 and two
maxima at ±z0 :=±

√
(3a2−2β)/6.
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Clearly, in region III one must replace ρw with ρg, which is
equal to zero in an even interval around z = 0, and the sys-
tem undergoes a non-DK phase transition from the weak
regime to the gapped regime on the critical curve

β =−

√
2

µ
. (28)

At this transition curve, the maximum value of ρw(z) is

ρw(±z0) =

(
213µ

36π4

)1/4
. (29)

One should also make sure that at this point ρw is still
never greater than one, which sets a condition for β:

β ≤ β0 :=−
128

27π2
. (30)

Therefore, as µ increases, for β < β0 the system goes from
the weak regime to the gapped regime, while for β > β0 the
system goes from the weak regime to the strong regime, i.e.
it undergoes the ordinary DK phase transition.
To obtain the order of the above non-DK phase transi-

tion, one must determine the parameters l and m in (22).
Using (25), it is seen that

ρ′′(0)|c =

(
128µ3

π4

)1/4
, (31)

which is positive and this shows that m = 1. To obtain l,
one should investigate the behavior of α for fixed β with
respect to µ. (Note that µ differs from A just by the mul-
tiplicative positive constant 2c4.) One has

α=−
µa

π

(
a2

2
+β

)
. (32)

From (26), it is seen that the derivative of a with respect
to µ at fixed β is a finite negative number. Noting that
(a2+2β) vanishes at the transition, one obtains

∂α

∂µ
=−
µa2

π

∂a

∂µ
, (33)

which is positive. So l = 1, and the order of the transition
is 3. This has been pointed out in [17], based on different
arguments.

4 Nontypical models

Consider the following potential:

G2(z) =
k+1∑

n=1

c2nz
2n , (34)

where c2k+2 is positive. Defining

µ := (k+1)Ac2k+2 ,

βn :=
k+1−n

k+1

c2k+2−2n

c2k+2
, (35)

and using (14) and (15), one finds

ρw(z) =
µ

π

√
a2− z2

k∑

q=0

k−q∑

n=0

γnβk−n−qz
2q

=:
µ

π

√
a2− z2

k∑

q=0

δqz
2q , (36)

and

µ

k+1∑

n=1

γnβk+1−n = 1 , (37)

respectively, where

γn :=
(2n−1)!!

2nn!
a2n . (38)

The aim is to tune the coupling constants so that

k∑

q=0

k−q∑

n=0

γnβk−n−qz
2q

∣∣∣∣∣
a=a0

= z2k . (39)

This leads to

p∑

n=0

γnβp−n

∣∣∣∣∣
a=a0

= δp,0 , p≤ k . (40)

To solve this, one notices that

∞∑

n=0

γns
n = (1−a2s)−1/2 . (41)

It is seen that if one defines β̃n so that

∞∑

n=0

β̃ns
n =
(
1−a20s

)1/2
, (42)

then

p∑

n=0

γnβ̃p−n

∣∣∣∣∣
a=a0

= δp,0 . (43)

So βn is the same as β̃n, for n≤ k:

βn =−
(2n−3)!!

2nn!
a2n0 , n≤ k . (44)

It is seen that β0 is positive (in fact, one), while the other
βns are negative. Now consider the coefficient of z

2q in the
summation (36). One has

δq = γk−q

(
1+

k−q−1∑

n=0

γn

γk−q
βk−n−q

)
. (45)

It is seen that for q < k, the derivative of the parentheses
with respect to a is positive. (Each term in the summa-
tion is a negative constant times a negative power of a.)
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Knowing that it vanishes at a= a0, one deduces that δq is
positive for a > a0, negative for a < a0, and there is a value
aq less than a0, so that the derivative of δq is positive
for a > aq. One then concludes that ρw is nonnegative for
a > a0, and ρw(0) is negative for a < a0. Also, the deriva-
tive of ρw(0) with respect to a is positive for a≥ a0. One
can summarize this as follows:

ρw(z)> 0 , a > a0 , (46)

ρw(0)< 0 , a < a0 , (47)

∂ρw(0)

∂a

∣∣∣∣
a≥a0

> 0 . (48)

Next, consider (37). The aim is to prove that with the
choice (44), to every a larger than a0 there corresponds
a positive µ, and for a≥ a0 the derivative of a with respect
to µ is negative. One can rewrite (37) as

1

µ
=− β̃k+1+

k+1∑

n=0

γnβ̃k+1−n ,

=− β̃k+1+ δ−1 . (49)

Therefore, exactly repeating the arguments used to arrive
at (46) to (48), one concludes that for a≥ a0 the right-hand
side of (49) is positive and the derivative of the right-hand
side of (49) with respect to a is positive:

µ(a)> 0 , a≥ a0, (50)

∂µ

∂a
< 0 , a≥ a0 . (51)

The final picture is as follows. Increasing µ from zero, a
decreases from infinity, so that at µ = µ0, one arrives at
a= a0:

µ0 :=
2k+1(k+1)!

(2k−1)!!a2k+20

. (52)

For µ < µ0, the density is nonnegative, while as µ exceeds
µ0, the density becomes negative at z = 0. Equations (48)
and (51) show that the derivative of α with respect to µ is
nonvanishing at µ= µ0. Hence,

l= 1 . (53)

To find the value of m, one notes that at the transition
point the first nonvanishing derivative of ρw at the origin is
the (2k)th derivative. So we have

m= k . (54)

From these equations, one finds that the order of the tran-
sition is [2+(1/k)].

There remains one point to take into account, which is
to make sure that for µ ≤ µ0 the density does not exceed
one. To address this, one notices that the transformation

a→ σa ,

a0→ σa0 ,

µ→ σ−2k−2µ ,

z→ σz ,

ρ→ σ−1ρ , (55)

where σ is an arbitrary positive constant, leaves all of the
relations intact. So, using a sufficiently large σ ensures that
the DK transition does not occur before the transition from
the weak regime to the gapped regime.
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